Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ozone production from the 2004 North American boreal fires

Identifieur interne : 000139 ( PascalFrancis/Corpus ); précédent : 000138; suivant : 000140

Ozone production from the 2004 North American boreal fires

Auteurs : G. G. Pfister ; L. K. Emmons ; P. G. Hess ; R. Honrath ; J.-F. Lamarque ; M. Val Martin ; R. C. Owen ; M. A. Avery ; E. V. Browell ; J. S. Holloway ; P. Nedelec ; R. Purvis ; T. B. Ryerson ; G. W. Sachse ; H. Schlager

Source :

RBID : Pascal:07-0091517

Descripteurs français

English descriptors

Abstract

[1] We examine the ozone production from boreal forest fires based on a case study of wildfires in Alaska and Canada in summer 2004. The model simulations were performed with the chemistry transport model, MOZART-4, and were evaluated by comparison with a comprehensive set of aircraft measurements. In the analysis we use measurements and model simulations of carbon monoxide (CO) and ozone (O3) at the PICO-NARE station located in the Azores within the pathway of North American outflow. The modeled mixing ratios were used to test the robustness of the enhancement ratio ΔO3/ΔCO (defined as the excess O3 mixing ratio normalized by the increase in CO) and the feasibility for using this ratio in estimating the O3 production from the wildfires. Modeled and observed enhancement ratios are about 0.25 ppbv/ppbv which is in the range of values found in the literature and results in a global net O3 production of 12.9 ± 2 Tg O3 during summer 2004. This matches the net O3 production calculated in the model for a region extending from Alaska to the east Atlantic (9-11 Tg O3) indicating that observations at PICO-NARE representing photochemically well aged plumes provide a good measure of the O3production of North American boreal fires. However, net chemical loss of fire-related O3 dominates in regions far downwind from the fires (e.g., Europe and Asia) resulting in a global net O3 production of 6 Tg O3 during the same time period. On average, the fires increased the O3 burden (surface -300 mbar) over Alaska and Canada during summer 2004 by about 7-9% and over Europe by about 2-3%.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 111
A06       @2 D24
A08 01  1  ENG  @1 Ozone production from the 2004 North American boreal fires
A11 01  1    @1 PFISTER (G. G.)
A11 02  1    @1 EMMONS (L. K.)
A11 03  1    @1 HESS (P. G.)
A11 04  1    @1 HONRATH (R.)
A11 05  1    @1 LAMARQUE (J.-F.)
A11 06  1    @1 VAL MARTIN (M.)
A11 07  1    @1 OWEN (R. C.)
A11 08  1    @1 AVERY (M. A.)
A11 09  1    @1 BROWELL (E. V.)
A11 10  1    @1 HOLLOWAY (J. S.)
A11 11  1    @1 NEDELEC (P.)
A11 12  1    @1 PURVIS (R.)
A11 13  1    @1 RYERSON (T. B.)
A11 14  1    @1 SACHSE (G. W.)
A11 15  1    @1 SCHLAGER (H.)
A14 01      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 5 aut.
A14 02      @1 Department of Civil and Environmental Engineering, Michigan Technological University @2 Houghton, Michigan @3 USA @Z 4 aut. @Z 6 aut. @Z 7 aut.
A14 03      @1 NASA Langley Research Center @2 Hampton, Virginia @3 USA @Z 8 aut. @Z 9 aut. @Z 14 aut.
A14 04      @1 National Oceanic and Atmospheric Administration @2 Boulder, Colorado @3 USA @Z 10 aut. @Z 13 aut.
A14 05      @1 Centre National de la Recherche Scientifique @2 Toulouse @3 FRA @Z 11 aut.
A14 06      @1 Facility for Airborne Atmospheric Measurement @2 Cranfield @3 GBR @Z 12 aut.
A14 07      @1 German Aerospace Center @2 Oberpfaffenhofen @3 DEU @Z 15 aut.
A20       @2 D24S07.1-D24S07.13
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000145392830390
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 1 p.
A47 01  1    @0 07-0091517
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] We examine the ozone production from boreal forest fires based on a case study of wildfires in Alaska and Canada in summer 2004. The model simulations were performed with the chemistry transport model, MOZART-4, and were evaluated by comparison with a comprehensive set of aircraft measurements. In the analysis we use measurements and model simulations of carbon monoxide (CO) and ozone (O3) at the PICO-NARE station located in the Azores within the pathway of North American outflow. The modeled mixing ratios were used to test the robustness of the enhancement ratio ΔO3/ΔCO (defined as the excess O3 mixing ratio normalized by the increase in CO) and the feasibility for using this ratio in estimating the O3 production from the wildfires. Modeled and observed enhancement ratios are about 0.25 ppbv/ppbv which is in the range of values found in the literature and results in a global net O3 production of 12.9 ± 2 Tg O3 during summer 2004. This matches the net O3 production calculated in the model for a region extending from Alaska to the east Atlantic (9-11 Tg O3) indicating that observations at PICO-NARE representing photochemically well aged plumes provide a good measure of the O3production of North American boreal fires. However, net chemical loss of fire-related O3 dominates in regions far downwind from the fires (e.g., Europe and Asia) resulting in a global net O3 production of 6 Tg O3 during the same time period. On average, the fires increased the O3 burden (surface -300 mbar) over Alaska and Canada during summer 2004 by about 7-9% and over Europe by about 2-3%.
C02 01  2    @0 220
C02 02  3    @0 001E
C02 03  2    @0 001E01
C03 01  2  FRE  @0 Ozone @5 01
C03 01  2  ENG  @0 ozone @5 01
C03 01  2  SPA  @0 Ozono @5 01
C03 02  2  FRE  @0 Boréal @5 02
C03 02  2  ENG  @0 Boreal @5 02
C03 02  2  SPA  @0 Boreal @5 02
C03 03  X  FRE  @0 Incendie forêt @5 03
C03 03  X  ENG  @0 Forest fire @5 03
C03 03  X  SPA  @0 Incendio forestal @5 03
C03 04  X  FRE  @0 Forêt boréale @5 04
C03 04  X  ENG  @0 Boreal forest @5 04
C03 04  X  SPA  @0 Bosque boreal @5 04
C03 05  2  FRE  @0 Etude cas @5 05
C03 05  2  ENG  @0 case studies @5 05
C03 05  2  SPA  @0 Estudio caso @5 05
C03 06  X  FRE  @0 Eté @5 06
C03 06  X  ENG  @0 Summer @5 06
C03 06  X  SPA  @0 Verano @5 06
C03 07  2  FRE  @0 Modèle @5 07
C03 07  2  ENG  @0 models @5 07
C03 07  2  SPA  @0 Modelo @5 07
C03 08  2  FRE  @0 Simulation @5 08
C03 08  2  ENG  @0 simulation @5 08
C03 08  2  SPA  @0 Simulación @5 08
C03 09  2  FRE  @0 Transport @5 09
C03 09  2  ENG  @0 transport @5 09
C03 09  2  SPA  @0 Transporte @5 09
C03 10  X  FRE  @0 Observation par avion @5 10
C03 10  X  ENG  @0 Aircraft observation @5 10
C03 10  X  SPA  @0 Observación por avión @5 10
C03 11  2  FRE  @0 Monoxyde carbone @5 11
C03 11  2  ENG  @0 carbon monoxide @5 11
C03 12  X  FRE  @0 Carbone monoxyde @2 NK @2 FX @5 12
C03 12  X  ENG  @0 Carbon monoxide @2 NK @2 FX @5 12
C03 12  X  SPA  @0 Carbono monóxido @2 NK @2 FX @5 12
C03 13  X  FRE  @0 Rapport mélange @5 13
C03 13  X  ENG  @0 Mixing ratio @5 13
C03 13  X  SPA  @0 Relación mezcla @5 13
C03 14  X  FRE  @0 Faisabilité @5 14
C03 14  X  ENG  @0 Feasibility @5 14
C03 14  X  SPA  @0 Practicabilidad @5 14
C03 15  2  FRE  @0 Monde @5 15
C03 15  2  ENG  @0 global @5 15
C03 15  2  SPA  @0 Mundo @5 15
C03 16  2  FRE  @0 Panache @5 16
C03 16  2  ENG  @0 plumes @5 16
C03 16  2  SPA  @0 Penacho @5 16
C03 17  2  FRE  @0 Europe @5 17
C03 17  2  ENG  @0 Europe @5 17
C03 17  2  SPA  @0 Europa @5 17
C03 18  2  FRE  @0 Asie @5 18
C03 18  2  ENG  @0 Asia @5 18
C03 18  2  SPA  @0 Asia @5 18
C03 19  2  FRE  @0 Alaska @2 NG @5 61
C03 19  2  ENG  @0 Alaska @2 NG @5 61
C03 19  2  SPA  @0 Alaska @2 NG @5 61
C03 20  2  FRE  @0 Canada @2 NG @5 62
C03 20  2  ENG  @0 Canada @2 NG @5 62
C03 20  2  SPA  @0 Canada @2 NG @5 62
C03 21  2  FRE  @0 Açores @2 NG @5 63
C03 21  2  ENG  @0 Azores @2 NG @5 63
C03 21  2  SPA  @0 Azores @2 NG @5 63
C03 22  2  FRE  @0 Océan Atlantique Est @2 NG @5 64
C03 22  2  ENG  @0 East Atlantic @2 NG @5 64
C07 01  2  FRE  @0 Etats Unis @2 NG
C07 01  2  ENG  @0 United States @2 NG
C07 01  2  SPA  @0 Estados Unidos @2 NG
C07 02  2  FRE  @0 Amérique du Nord
C07 02  2  ENG  @0 North America
C07 02  2  SPA  @0 America del norte
C07 03  2  FRE  @0 Iles Océan Atlantique
C07 03  2  ENG  @0 Atlantic Ocean Islands
C07 04  2  FRE  @0 Océan Atlantique
C07 04  2  ENG  @0 Atlantic Ocean
C07 04  2  SPA  @0 Océano Atlántico
N21       @1 057
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 07-0091517 INIST
ET : Ozone production from the 2004 North American boreal fires
AU : PFISTER (G. G.); EMMONS (L. K.); HESS (P. G.); HONRATH (R.); LAMARQUE (J.-F.); VAL MARTIN (M.); OWEN (R. C.); AVERY (M. A.); BROWELL (E. V.); HOLLOWAY (J. S.); NEDELEC (P.); PURVIS (R.); RYERSON (T. B.); SACHSE (G. W.); SCHLAGER (H.)
AF : National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 5 aut.); Department of Civil and Environmental Engineering, Michigan Technological University/Houghton, Michigan/Etats-Unis (4 aut., 6 aut., 7 aut.); NASA Langley Research Center/Hampton, Virginia/Etats-Unis (8 aut., 9 aut., 14 aut.); National Oceanic and Atmospheric Administration/Boulder, Colorado/Etats-Unis (10 aut., 13 aut.); Centre National de la Recherche Scientifique/Toulouse/France (11 aut.); Facility for Airborne Atmospheric Measurement/Cranfield/Royaume-Uni (12 aut.); German Aerospace Center/Oberpfaffenhofen/Allemagne (15 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2006; Vol. 111; No. D24; D24S07.1-D24S07.13; Bibl. 1 p.
LA : Anglais
EA : [1] We examine the ozone production from boreal forest fires based on a case study of wildfires in Alaska and Canada in summer 2004. The model simulations were performed with the chemistry transport model, MOZART-4, and were evaluated by comparison with a comprehensive set of aircraft measurements. In the analysis we use measurements and model simulations of carbon monoxide (CO) and ozone (O3) at the PICO-NARE station located in the Azores within the pathway of North American outflow. The modeled mixing ratios were used to test the robustness of the enhancement ratio ΔO3/ΔCO (defined as the excess O3 mixing ratio normalized by the increase in CO) and the feasibility for using this ratio in estimating the O3 production from the wildfires. Modeled and observed enhancement ratios are about 0.25 ppbv/ppbv which is in the range of values found in the literature and results in a global net O3 production of 12.9 ± 2 Tg O3 during summer 2004. This matches the net O3 production calculated in the model for a region extending from Alaska to the east Atlantic (9-11 Tg O3) indicating that observations at PICO-NARE representing photochemically well aged plumes provide a good measure of the O3production of North American boreal fires. However, net chemical loss of fire-related O3 dominates in regions far downwind from the fires (e.g., Europe and Asia) resulting in a global net O3 production of 6 Tg O3 during the same time period. On average, the fires increased the O3 burden (surface -300 mbar) over Alaska and Canada during summer 2004 by about 7-9% and over Europe by about 2-3%.
CC : 220; 001E; 001E01
FD : Ozone; Boréal; Incendie forêt; Forêt boréale; Etude cas; Eté; Modèle; Simulation; Transport; Observation par avion; Monoxyde carbone; Carbone monoxyde; Rapport mélange; Faisabilité; Monde; Panache; Europe; Asie; Alaska; Canada; Açores; Océan Atlantique Est
FG : Etats Unis; Amérique du Nord; Iles Océan Atlantique; Océan Atlantique
ED : ozone; Boreal; Forest fire; Boreal forest; case studies; Summer; models; simulation; transport; Aircraft observation; carbon monoxide; Carbon monoxide; Mixing ratio; Feasibility; global; plumes; Europe; Asia; Alaska; Canada; Azores; East Atlantic
EG : United States; North America; Atlantic Ocean Islands; Atlantic Ocean
SD : Ozono; Boreal; Incendio forestal; Bosque boreal; Estudio caso; Verano; Modelo; Simulación; Transporte; Observación por avión; Carbono monóxido; Relación mezcla; Practicabilidad; Mundo; Penacho; Europa; Asia; Alaska; Canada; Azores
LO : INIST-3144.354000145392830390
ID : 07-0091517

Links to Exploration step

Pascal:07-0091517

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Ozone production from the 2004 North American boreal fires</title>
<author>
<name sortKey="Pfister, G G" sort="Pfister, G G" uniqKey="Pfister G" first="G. G." last="Pfister">G. G. Pfister</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, L K" sort="Emmons, L K" uniqKey="Emmons L" first="L. K." last="Emmons">L. K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hess, P G" sort="Hess, P G" uniqKey="Hess P" first="P. G." last="Hess">P. G. Hess</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Honrath, R" sort="Honrath, R" uniqKey="Honrath R" first="R." last="Honrath">R. Honrath</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Civil and Environmental Engineering, Michigan Technological University</s1>
<s2>Houghton, Michigan</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, J F" sort="Lamarque, J F" uniqKey="Lamarque J" first="J.-F." last="Lamarque">J.-F. Lamarque</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Val Martin, M" sort="Val Martin, M" uniqKey="Val Martin M" first="M." last="Val Martin">M. Val Martin</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Civil and Environmental Engineering, Michigan Technological University</s1>
<s2>Houghton, Michigan</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Owen, R C" sort="Owen, R C" uniqKey="Owen R" first="R. C." last="Owen">R. C. Owen</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Civil and Environmental Engineering, Michigan Technological University</s1>
<s2>Houghton, Michigan</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Avery, M A" sort="Avery, M A" uniqKey="Avery M" first="M. A." last="Avery">M. A. Avery</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Browell, E V" sort="Browell, E V" uniqKey="Browell E" first="E. V." last="Browell">E. V. Browell</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Holloway, J S" sort="Holloway, J S" uniqKey="Holloway J" first="J. S." last="Holloway">J. S. Holloway</name>
<affiliation>
<inist:fA14 i1="04">
<s1>National Oceanic and Atmospheric Administration</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Nedelec, P" sort="Nedelec, P" uniqKey="Nedelec P" first="P." last="Nedelec">P. Nedelec</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Centre National de la Recherche Scientifique</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Purvis, R" sort="Purvis, R" uniqKey="Purvis R" first="R." last="Purvis">R. Purvis</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Facility for Airborne Atmospheric Measurement</s1>
<s2>Cranfield</s2>
<s3>GBR</s3>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ryerson, T B" sort="Ryerson, T B" uniqKey="Ryerson T" first="T. B." last="Ryerson">T. B. Ryerson</name>
<affiliation>
<inist:fA14 i1="04">
<s1>National Oceanic and Atmospheric Administration</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sachse, G W" sort="Sachse, G W" uniqKey="Sachse G" first="G. W." last="Sachse">G. W. Sachse</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schlager, H" sort="Schlager, H" uniqKey="Schlager H" first="H." last="Schlager">H. Schlager</name>
<affiliation>
<inist:fA14 i1="07">
<s1>German Aerospace Center</s1>
<s2>Oberpfaffenhofen</s2>
<s3>DEU</s3>
<sZ>15 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0091517</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 07-0091517 INIST</idno>
<idno type="RBID">Pascal:07-0091517</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000139</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Ozone production from the 2004 North American boreal fires</title>
<author>
<name sortKey="Pfister, G G" sort="Pfister, G G" uniqKey="Pfister G" first="G. G." last="Pfister">G. G. Pfister</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, L K" sort="Emmons, L K" uniqKey="Emmons L" first="L. K." last="Emmons">L. K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hess, P G" sort="Hess, P G" uniqKey="Hess P" first="P. G." last="Hess">P. G. Hess</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Honrath, R" sort="Honrath, R" uniqKey="Honrath R" first="R." last="Honrath">R. Honrath</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Civil and Environmental Engineering, Michigan Technological University</s1>
<s2>Houghton, Michigan</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, J F" sort="Lamarque, J F" uniqKey="Lamarque J" first="J.-F." last="Lamarque">J.-F. Lamarque</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Val Martin, M" sort="Val Martin, M" uniqKey="Val Martin M" first="M." last="Val Martin">M. Val Martin</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Civil and Environmental Engineering, Michigan Technological University</s1>
<s2>Houghton, Michigan</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Owen, R C" sort="Owen, R C" uniqKey="Owen R" first="R. C." last="Owen">R. C. Owen</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Civil and Environmental Engineering, Michigan Technological University</s1>
<s2>Houghton, Michigan</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Avery, M A" sort="Avery, M A" uniqKey="Avery M" first="M. A." last="Avery">M. A. Avery</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Browell, E V" sort="Browell, E V" uniqKey="Browell E" first="E. V." last="Browell">E. V. Browell</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Holloway, J S" sort="Holloway, J S" uniqKey="Holloway J" first="J. S." last="Holloway">J. S. Holloway</name>
<affiliation>
<inist:fA14 i1="04">
<s1>National Oceanic and Atmospheric Administration</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Nedelec, P" sort="Nedelec, P" uniqKey="Nedelec P" first="P." last="Nedelec">P. Nedelec</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Centre National de la Recherche Scientifique</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Purvis, R" sort="Purvis, R" uniqKey="Purvis R" first="R." last="Purvis">R. Purvis</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Facility for Airborne Atmospheric Measurement</s1>
<s2>Cranfield</s2>
<s3>GBR</s3>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ryerson, T B" sort="Ryerson, T B" uniqKey="Ryerson T" first="T. B." last="Ryerson">T. B. Ryerson</name>
<affiliation>
<inist:fA14 i1="04">
<s1>National Oceanic and Atmospheric Administration</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sachse, G W" sort="Sachse, G W" uniqKey="Sachse G" first="G. W." last="Sachse">G. W. Sachse</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schlager, H" sort="Schlager, H" uniqKey="Schlager H" first="H." last="Schlager">H. Schlager</name>
<affiliation>
<inist:fA14 i1="07">
<s1>German Aerospace Center</s1>
<s2>Oberpfaffenhofen</s2>
<s3>DEU</s3>
<sZ>15 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aircraft observation</term>
<term>Alaska</term>
<term>Asia</term>
<term>Azores</term>
<term>Boreal</term>
<term>Boreal forest</term>
<term>Canada</term>
<term>Carbon monoxide</term>
<term>East Atlantic</term>
<term>Europe</term>
<term>Feasibility</term>
<term>Forest fire</term>
<term>Mixing ratio</term>
<term>Summer</term>
<term>carbon monoxide</term>
<term>case studies</term>
<term>global</term>
<term>models</term>
<term>ozone</term>
<term>plumes</term>
<term>simulation</term>
<term>transport</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ozone</term>
<term>Boréal</term>
<term>Incendie forêt</term>
<term>Forêt boréale</term>
<term>Etude cas</term>
<term>Eté</term>
<term>Modèle</term>
<term>Simulation</term>
<term>Transport</term>
<term>Observation par avion</term>
<term>Monoxyde carbone</term>
<term>Carbone monoxyde</term>
<term>Rapport mélange</term>
<term>Faisabilité</term>
<term>Monde</term>
<term>Panache</term>
<term>Europe</term>
<term>Asie</term>
<term>Alaska</term>
<term>Canada</term>
<term>Açores</term>
<term>Océan Atlantique Est</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] We examine the ozone production from boreal forest fires based on a case study of wildfires in Alaska and Canada in summer 2004. The model simulations were performed with the chemistry transport model, MOZART-4, and were evaluated by comparison with a comprehensive set of aircraft measurements. In the analysis we use measurements and model simulations of carbon monoxide (CO) and ozone (O
<sub>3</sub>
) at the PICO-NARE station located in the Azores within the pathway of North American outflow. The modeled mixing ratios were used to test the robustness of the enhancement ratio ΔO
<sub>3</sub>
/ΔCO (defined as the excess O
<sub>3</sub>
mixing ratio normalized by the increase in CO) and the feasibility for using this ratio in estimating the O
<sub>3</sub>
production from the wildfires. Modeled and observed enhancement ratios are about 0.25 ppbv/ppbv which is in the range of values found in the literature and results in a global net O
<sub>3</sub>
production of 12.9 ± 2 Tg O
<sub>3</sub>
during summer 2004. This matches the net O
<sub>3</sub>
production calculated in the model for a region extending from Alaska to the east Atlantic (9-11 Tg O
<sub>3</sub>
) indicating that observations at PICO-NARE representing photochemically well aged plumes provide a good measure of the O
<sub>3</sub>
production of North American boreal fires. However, net chemical loss of fire-related O
<sub>3</sub>
dominates in regions far downwind from the fires (e.g., Europe and Asia) resulting in a global net O
<sub>3</sub>
production of 6 Tg O
<sub>3</sub>
during the same time period. On average, the fires increased the O
<sub>3</sub>
burden (surface -300 mbar) over Alaska and Canada during summer 2004 by about 7-9% and over Europe by about 2-3%.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>111</s2>
</fA05>
<fA06>
<s2>D24</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Ozone production from the 2004 North American boreal fires</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PFISTER (G. G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EMMONS (L. K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HESS (P. G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HONRATH (R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LAMARQUE (J.-F.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>VAL MARTIN (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>OWEN (R. C.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>AVERY (M. A.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>BROWELL (E. V.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>HOLLOWAY (J. S.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>NEDELEC (P.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>PURVIS (R.)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>RYERSON (T. B.)</s1>
</fA11>
<fA11 i1="14" i2="1">
<s1>SACHSE (G. W.)</s1>
</fA11>
<fA11 i1="15" i2="1">
<s1>SCHLAGER (H.)</s1>
</fA11>
<fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Civil and Environmental Engineering, Michigan Technological University</s1>
<s2>Houghton, Michigan</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>14 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>National Oceanic and Atmospheric Administration</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
<sZ>13 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Centre National de la Recherche Scientifique</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Facility for Airborne Atmospheric Measurement</s1>
<s2>Cranfield</s2>
<s3>GBR</s3>
<sZ>12 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>German Aerospace Center</s1>
<s2>Oberpfaffenhofen</s2>
<s3>DEU</s3>
<sZ>15 aut.</sZ>
</fA14>
<fA20>
<s2>D24S07.1-D24S07.13</s2>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000145392830390</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0091517</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] We examine the ozone production from boreal forest fires based on a case study of wildfires in Alaska and Canada in summer 2004. The model simulations were performed with the chemistry transport model, MOZART-4, and were evaluated by comparison with a comprehensive set of aircraft measurements. In the analysis we use measurements and model simulations of carbon monoxide (CO) and ozone (O
<sub>3</sub>
) at the PICO-NARE station located in the Azores within the pathway of North American outflow. The modeled mixing ratios were used to test the robustness of the enhancement ratio ΔO
<sub>3</sub>
/ΔCO (defined as the excess O
<sub>3</sub>
mixing ratio normalized by the increase in CO) and the feasibility for using this ratio in estimating the O
<sub>3</sub>
production from the wildfires. Modeled and observed enhancement ratios are about 0.25 ppbv/ppbv which is in the range of values found in the literature and results in a global net O
<sub>3</sub>
production of 12.9 ± 2 Tg O
<sub>3</sub>
during summer 2004. This matches the net O
<sub>3</sub>
production calculated in the model for a region extending from Alaska to the east Atlantic (9-11 Tg O
<sub>3</sub>
) indicating that observations at PICO-NARE representing photochemically well aged plumes provide a good measure of the O
<sub>3</sub>
production of North American boreal fires. However, net chemical loss of fire-related O
<sub>3</sub>
dominates in regions far downwind from the fires (e.g., Europe and Asia) resulting in a global net O
<sub>3</sub>
production of 6 Tg O
<sub>3</sub>
during the same time period. On average, the fires increased the O
<sub>3</sub>
burden (surface -300 mbar) over Alaska and Canada during summer 2004 by about 7-9% and over Europe by about 2-3%.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>ozone</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Boréal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>Boreal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Boreal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Incendie forêt</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Forest fire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Incendio forestal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Forêt boréale</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Boreal forest</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Bosque boreal</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Etude cas</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>case studies</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Estudio caso</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Eté</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Summer</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Verano</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>models</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Simulation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>simulation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Simulación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Transport</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>transport</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Observation par avion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Aircraft observation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Observación por avión</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Monoxyde carbone</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>carbon monoxide</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Carbone monoxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Carbon monoxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Carbono monóxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Rapport mélange</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Mixing ratio</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Relación mezcla</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Faisabilité</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Feasibility</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Practicabilidad</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Monde</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>global</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Panache</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>plumes</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Penacho</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Europe</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>Europe</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Europa</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Asie</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>Asia</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Asia</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Alaska</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>Alaska</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Alaska</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Canada</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>Canada</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Canada</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Açores</s0>
<s2>NG</s2>
<s5>63</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>Azores</s0>
<s2>NG</s2>
<s5>63</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Azores</s0>
<s2>NG</s2>
<s5>63</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Océan Atlantique Est</s0>
<s2>NG</s2>
<s5>64</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>East Atlantic</s0>
<s2>NG</s2>
<s5>64</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>North America</s0>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>America del norte</s0>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Iles Océan Atlantique</s0>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>Atlantic Ocean Islands</s0>
</fC07>
<fC07 i1="04" i2="2" l="FRE">
<s0>Océan Atlantique</s0>
</fC07>
<fC07 i1="04" i2="2" l="ENG">
<s0>Atlantic Ocean</s0>
</fC07>
<fC07 i1="04" i2="2" l="SPA">
<s0>Océano Atlántico</s0>
</fC07>
<fN21>
<s1>057</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 07-0091517 INIST</NO>
<ET>Ozone production from the 2004 North American boreal fires</ET>
<AU>PFISTER (G. G.); EMMONS (L. K.); HESS (P. G.); HONRATH (R.); LAMARQUE (J.-F.); VAL MARTIN (M.); OWEN (R. C.); AVERY (M. A.); BROWELL (E. V.); HOLLOWAY (J. S.); NEDELEC (P.); PURVIS (R.); RYERSON (T. B.); SACHSE (G. W.); SCHLAGER (H.)</AU>
<AF>National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 5 aut.); Department of Civil and Environmental Engineering, Michigan Technological University/Houghton, Michigan/Etats-Unis (4 aut., 6 aut., 7 aut.); NASA Langley Research Center/Hampton, Virginia/Etats-Unis (8 aut., 9 aut., 14 aut.); National Oceanic and Atmospheric Administration/Boulder, Colorado/Etats-Unis (10 aut., 13 aut.); Centre National de la Recherche Scientifique/Toulouse/France (11 aut.); Facility for Airborne Atmospheric Measurement/Cranfield/Royaume-Uni (12 aut.); German Aerospace Center/Oberpfaffenhofen/Allemagne (15 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2006; Vol. 111; No. D24; D24S07.1-D24S07.13; Bibl. 1 p.</SO>
<LA>Anglais</LA>
<EA>[1] We examine the ozone production from boreal forest fires based on a case study of wildfires in Alaska and Canada in summer 2004. The model simulations were performed with the chemistry transport model, MOZART-4, and were evaluated by comparison with a comprehensive set of aircraft measurements. In the analysis we use measurements and model simulations of carbon monoxide (CO) and ozone (O
<sub>3</sub>
) at the PICO-NARE station located in the Azores within the pathway of North American outflow. The modeled mixing ratios were used to test the robustness of the enhancement ratio ΔO
<sub>3</sub>
/ΔCO (defined as the excess O
<sub>3</sub>
mixing ratio normalized by the increase in CO) and the feasibility for using this ratio in estimating the O
<sub>3</sub>
production from the wildfires. Modeled and observed enhancement ratios are about 0.25 ppbv/ppbv which is in the range of values found in the literature and results in a global net O
<sub>3</sub>
production of 12.9 ± 2 Tg O
<sub>3</sub>
during summer 2004. This matches the net O
<sub>3</sub>
production calculated in the model for a region extending from Alaska to the east Atlantic (9-11 Tg O
<sub>3</sub>
) indicating that observations at PICO-NARE representing photochemically well aged plumes provide a good measure of the O
<sub>3</sub>
production of North American boreal fires. However, net chemical loss of fire-related O
<sub>3</sub>
dominates in regions far downwind from the fires (e.g., Europe and Asia) resulting in a global net O
<sub>3</sub>
production of 6 Tg O
<sub>3</sub>
during the same time period. On average, the fires increased the O
<sub>3</sub>
burden (surface -300 mbar) over Alaska and Canada during summer 2004 by about 7-9% and over Europe by about 2-3%.</EA>
<CC>220; 001E; 001E01</CC>
<FD>Ozone; Boréal; Incendie forêt; Forêt boréale; Etude cas; Eté; Modèle; Simulation; Transport; Observation par avion; Monoxyde carbone; Carbone monoxyde; Rapport mélange; Faisabilité; Monde; Panache; Europe; Asie; Alaska; Canada; Açores; Océan Atlantique Est</FD>
<FG>Etats Unis; Amérique du Nord; Iles Océan Atlantique; Océan Atlantique</FG>
<ED>ozone; Boreal; Forest fire; Boreal forest; case studies; Summer; models; simulation; transport; Aircraft observation; carbon monoxide; Carbon monoxide; Mixing ratio; Feasibility; global; plumes; Europe; Asia; Alaska; Canada; Azores; East Atlantic</ED>
<EG>United States; North America; Atlantic Ocean Islands; Atlantic Ocean</EG>
<SD>Ozono; Boreal; Incendio forestal; Bosque boreal; Estudio caso; Verano; Modelo; Simulación; Transporte; Observación por avión; Carbono monóxido; Relación mezcla; Practicabilidad; Mundo; Penacho; Europa; Asia; Alaska; Canada; Azores</SD>
<LO>INIST-3144.354000145392830390</LO>
<ID>07-0091517</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000139 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000139 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0091517
   |texte=   Ozone production from the 2004 North American boreal fires
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023